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SUMMARY

Polydimethylsiloxane (PDMS) networks have been formed
by endlinking linear PDMS molecules. When a second layer is
cast on top of a fully-gelled lower layer, the new molecules
diffuse into the surface of the lower layer and form molecular
loops ("entanglements") in the course of endlinking with them-
selves. The two layers are then joined only by these macro-
molecular loops. Measurements have been made of the work required
to separate such layers under threshold conditions, i.e., at low
rates, high temperatures, and, in some cases, in the swollen
state. Values of the work of detachment have been found to be
15-25 J/m?, generally about one-half of the work of fracture of
the layers themselves, and consistent with the inferred density
of interlinking molecular loops at the interface. The values
were higher for higher densities, roughly in proportion, and for
interlinking molecular strands of higher molecular weight, in
accordance with the theory of Lake and Thomas. In the absence
of interlinking the work of detachment was extremely small, only

about 70 mJ/m?®.

INTRODUCTION

Measurements are reported here of the mechanical strength
of molecular networks formed by the physical entanglement of
elastomeric macromolecules. Previous studies have focussed on
networks formed by interlinking macromolecules by covalent

bonds (1-3). Such networks are relatively strong even under
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threshold conditions, when dissipative processes are minimized.

The work Gc of fracture per unit area torn through is then about

RO SN

30-100 J/;;, large in comparison with the theoretical value for

a plane of C-C covalent bonds, about 1 J/m?. This difference

has been attributed by Lake and Thomas to the polymeric nature

of the molecular strands comprisirg the network: many bonds must
be stressed in order to break any strand (4). They concluded
that the work of fracture is given by

%

G = K Mc (1)

c
where M, is the molecular weight of a network strand and
K is a—;onstant involving the density of the polymer, the effec-
tive mass, length and flexibility of a single main-chain bond,
and the bond dissociation energy.

In Part I (5), two sheets of a crosslinked elastomer were
placed in contact and joined by covalent chemical bonds. The
work Ga of detachment under threshold conditions was found to
incre;;e in proportion to the density of interfacial bonds, from
the low value characteristic of only Van der Waals' attractions
up to the work Gc of fracture of the sheets themselves. Again,
for a given den;Ity of interfacial interlinking the detachment
work Ga vvas found to be greater when the network and interlink- B
ing sZ;ands were longer, in accordance with the concept of Lake ;3
and Thomas (5,6). !}

We now address the question: suppose two elastomeric

sheets are connected together by molecules which loop around =

others in the opposite surface, forming permanent molecular
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"entanglements", but are not connected directly by interlinking

LA

bonds, will the strength of adhesion be substantially different

from the covalently-bonded case? The answer will be important

for any quantitative treatment of the relationship between @
network structure and threshold strength. A
)

The method employed for preparing pairs of elastomeric

sheets joined only by "entanglements" was as follows. A layer
of end~linkable polydimethylsiloxane (PDMS) linear polymer was
poured as a flat sheet and then subjected to an end-linking
(gelation) reaction using a tetrafunctional silane linking
reagent (3,7). On top of the elastomeric PDMS sheet prepared

in this way a second layer of PDMS polymer was poured and gelled
in situ. Because the first layer was completely reacted, the
second layer was unable to link with it directly. But, because
of the relatively rapid interdiffusion of PDMS molecules (8},
there will be a substantial penetration of the first layer by

molecules of the second while they are in the process of end-

linking to form the second elastomeric layer. Thus, the two

layers will be joined by a permanent molecular entanglement

I .yt

wherever a molecule of the second layer loops around one of the
first layer before end-linking is complete, Figure 1.

Values of the detachment work Ga per unit area of interface

-

have been determined for sheets interlinked in this way. They
are reported here for specimens prepared using PDMS of three

different molecular weights, and they are compared with corre-

BERY . AL S R S

sponding values for unentangled sheets, held together only by

Van der Waals attractions.
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EXPERIMENTAL DETAILS

(i) Preparation of polydimethylsiloxane (PDMS) networks

Networks were prepared as described elsewhere (3) from

linear polydimethylsiloxanes having vinyl end groups. A tetra- 3
functional silane linking agent, tetrakisdimethylsiloxysilane,
kindly supplied by Prof. C. W. Macosko, was mixed with the
divinyl polymer, together with about 5 ppm of a Pt catalyst (9).
The mixture was then degassed and cast as a thin sheet, about
1l mm thick, on a Teflon surface. Complete reaction, judged by
the attainment of minimum swelling of the resultant gel in ben-
zene, was achieved after 3 days at 70°C. Test sheets were there-
fore prepared by heating for 4 days at 70°C to ensure complete

reaction.

Sy

Polymers having three different molecular weight (ﬁn =

11,500, 22,500 and 36,000 g/g-mole) were used for preparing net-

DN

works. GPC data gave values for the ratio ﬁw/ﬁn of each polymer

of approximately 2.0.
(ii) Preparation of interlinked layers

Samples were made by first casting one layer of endlinked
PDMS, as described above, and then casting a second layer on .
top of it. 1In some cases the upper surface of the first layer -
was treated with l-nonene and a small amount of a Pt catalyst
(5 ppm) to saturate any residual SiH groups in the surface and
thus prevent any possible chemical linking between the two layers.

The top layer was then cast on in the usual way. No difference
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was observed in the strength of adhesion for treated and un-
treated samples. It was concluded that no chemical linking
occurred when the first layer was cured for 4 days at 70°C
before the second layer was applied.

(iii) Measurement of the threshold work Ga of detachment
Measurements were made of the peel f;;ce required to
separate two adhering layers, Figure 2. Samples were pre-swollen
witii m-xylene or silicone o0il in some instances and immersed in

a water bath at temperatures between 70°C and 90°C. The water
effectively prevented evaporation of the swelling liquid. Only
"symmetrical" samples were tested in the swollen state. "Sym-
metrical" samples are those in which both layers were made from
PDMS of the same molecular weight, so that the crosslink density
was the same and the degree of swelling would be equal. Values
of the work Ga of detachment were then calculated from the mea-
sured peel f;;ce P per unit width:

G, = 2)‘2s P . (2)
where Xs is the linear swelling ratio. The term Azs in

equation 2 accounts for the reduced number of network strands

crossing the interface in a swollen speciment. For unswollen

specimens, As = 1.

Peeling was carried out in all cases at a rate of about
8 um/s.

In order to study the strength of adhesion due to dispersion
forces alone, thin sheets about 0.8 mm thick were cast and placed

in contact with each other after cure. The upper surfaces of
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cast sheets were smooth and shiny, and were brought into con-
tact for these experiments. No difference was found in the
measured peel force after 15 min and 24 h of contact. There-
fore, 15 min was adopted as a standard contact time. Peeling
separation was then carried out at room temperature at a rate
of about 8 um/S.

One pair of sheets was extracted with benzene at room
temperature in an attempt to remove low-molecular-weight PDMS,
inherent in PDMS materials. These samples gave the same (low)
values of Ga as unextracted ones, 60-100 mJ/m? (Table 1). It
is conclud;g that the strength of self-adhesion of PDMS materials
under threshold conditions is extremely low, much lower than that

observed previously for hydrocarbon elastomers, about 1 J/m?

(5, 10). Possible reasons for this are discussed later.

RESULTS AND DISCUSSION
Values of Ga were measured for symmetrical interlinked
specimens, both swollen and unswollen. They are given in

Table 2. They were found to be in good agreement, when the

factor kzs was employed to correct for changes in the interlink-

ing density, and independent of the swelling liquid used. This
agreement shows that threshold conditions had, indeed, been
attained at the low rate of peel, 8 um/s, and high temperatures,
70-90°C, used for these experiments.

Values of Ga for all of the interlinked samples are given

in Table 3. They varied from 15 to 25 J/m?, depending upon

FA_A a

A A Rk bndad

A o cniniva

20 s

WYV SUP

DS VN R W)




SIS LA IR AN LSRN e A R UL i R A A A A S A

PNl
O v 4
LS
PPN

ra)
.

Yy ""'*

B

e el L

ol the molecular weights of the PDMS liquids used in preparing

?' the top and bottom layers. When these molecular weights were
I both low, then the strength of adhesion was relatively low, and
o when they were higher, then the strength of adhesion was rel-
atively high. This trend is consistent with previous results

for the strength of adhesion of elastomer layers to each other
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(5) and to glass (10) and for their cohesive strengths also

v
»

(2, 3, 6). In all cases, the work of fracture was greater when
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the network strands were longer, as predicted by Lake and
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Thomas (4). For the present materials, the network strand mol-
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ecular weight is given by the molecular weight of the precursor
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polymer, to a first approximation.
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In one case the upper layer could not be detached cleanly.

It tore apart, requiring the input work Gc of cohesive rupture,

g
A SV

instead of detaching. Molecules of the second layer had appar-

(RN

.
.

.
)
.

ently penetrated the first layer to such an extent in this case

that the interface was no longer the weakest plane. 1In all

’
LS Y

other cases, however, the work Ga of detachment was considerably

smaller than the work Gc of cohesive rupture of either of the

A l.-l

'_‘-' R A

IS

-~ two adhering layers. Values of Gc’ taken from reference 3, are

o given in parentheses in Table 3,—;or comparison.

= It is assumed that polymer molecules of the upper layer
diffuse rapidly into the already-gelled lower layer and reach

S an equilibrium concentration in the surface regions quickly,

L before they undergo a significant amount of end-linking and

gelation. Measurements of the equilibrium uptake of PDMS
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liquids by PDMS gels have been reported previously (8). The
results are given in Table 4 for the systems studied here.
They range from 1l to 57 per cent uptake of the liquid by unit
volume of the gel.

On comparing Tables 3 and 4, a general correlation is
evident between the threshold work Ga of detachment and the
amount of PDMS liquid taken up at e;;ilibrium, for each liquid.
In Figure 3, values of Ga are plotted against th -olume uptake
€. They are seen to be_gescribed reasonably we. by linear
relations for each PDMS liquid forming the uppe aver on later
gelation. Thus, it appears that the strength of _uhesion of the
upper layer is approximately proportional to the amount of the
precursor liquid absorbed by the lower layer, and hence to the
number of interlinking strands. Moreover, the slopes of the
linear relations shown in Figure 4 between G  and ¢; i.e., 60,

90 and 135 J/m?; are approximately in proportion to values of
M
o

ratio 65:90:115. Thus, the lengths of the interlinking strands

for the PDMS liquid in the upper layer, which are in the

also determine the strength of adhesion, in good guantitative
agreement with the Lake-Thomas theory.

The horizontal broken lines in Figure 4 denote the work
Gc of cohesive rupture for each upper layer. By extrapolation
;; two cases, and by direct observation in the third, it is con-
cluded that when the density of interlinking strands exceeds

35-50 per cent of those present in the lower layer then clean

separation at the interface is no longer the clearly-preferred

..........
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$ﬁ mode of fracture. At this stage, the total density of chains
(ﬁ crossing the interfacial plane will be about twice as large,
:ké 70-10C per cent, assuming that each pair of strands from the
:ig upper layer interlink successfully with a network mesh in the
B
3 lower layer, so that the number of interlinking strands approaches
o that for a randomly-chosen plane within the upper or lower layer.
E§ It is not surprising, therefore, that cohesive rupture replaces
N
\" interfacial separation at this point. |
;;f Finally, reference should be made to the extraordinarily
LN
;ﬁ: low values obtained for adhesion between non-interlinked sheets,
= Table 1, in comparison with those obtained previously for the
5; adhesion of sheets of hydrocarbon elastomers, about 1 J/m? (5).
Eé; The present results are much closer to theoretical values for the
;'\ maximum work of detachment due to Van der Waals' attractions
:;g alone, given by 2S5 where S is the surface energy of the elastomer
%E layer. Thus, Ga is expected to fall in the range 40-80 mJm? on
-'. this basis, in_;ood agreement with the present values for PDMS
“~
;j sheets.
§§ However, it was found previously that other elastomeric
) materials adhere together much more strongly, and this was
attributed to a generalization of the mechanism proposed by Lake
i; and Thomas to account for their higher cohesive strength: that
= many bonds in a network strand must be stressed in order to
Ef break any one of them (5, 10). 1In the case of autohesion, the
: bond to be broken is the weak Van der Waals association at the
ii interface, but the principle should still hold that the same
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energy must be imparted to every bond in the molecular chain
leading from the interface to the network itself, in order to
break the association.

The question is, therefore: Are the present results
representative cf elastomeric materials in general, with the
previous results for hydrocarbon elastomers anomalously high?
Or, are the previous results representative of elastomeric
materials in general, and the present results for PDMS layers
anomalously low?

Extraction of PDMS sheets with benzene did not raise the
level of adhesion significantly. Thus, there does not appear
to be a liquid-like layer on the surface, responsible for low
self-adhesion. On the other hand, it is extremely difficult to
remove low-molecular-weight silicone fluids completely. The
guestion raised above must therefore be considered unresolved,
at present. It merits further study, in view of the large dif-
ferences, by a factor of 10-20, between the two systems, and the
theoretical and practical importance of the self-adhesion of

elastomeric materials.

CONCLUSIONS

The main conclusion is that permanently "entangled"
macromolecular loops appear to have about the same strength
as covalently-bonded macromolecules of the same length. A
second conclusion is that the work of rupture across a plane

of such entanglements is roughly proportional to the inferred
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density of entanglement interlinking. And, finally, the

greater the molecular weight of the molecular strands comprising

the loops, the greater appears to be the work of rupture, in

accord with the theoretical treatment of Lake and Thomas for

the cohesive strength of an elastomeric network. These con-

clusions have clear implications for the strength of molecular

networks containing trapped entanglements.
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Table 1. Work G, (mJ/m?) of detachment for

(A4

fully-cured PDMS layers, placed in contact

Molecular weight Mn of PDMS in

o~
o "./ s

~ —

s upper layer ;

11,500 22,500 36,000

+
3]

11,500 66 3 60 * 4 81 *

Hl =1
ol e

1+
-+
w

84

I+
N

22,500 60

I+
>

80

+
(]

97

I+
[ =

N lower 36,000 81

~, layer

+
N

84
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Table 2.

(J/m?)

s

2P (N/m)

Ga(J/mz)*

As
2P (N/m)

Ga(J/mz)*

........

13

Threshold work Ga of detachment for

unswollen and swollen interlinked PDMS layers

Molecular weight Mn

of PDMS in both layers

il S a0 SR Ao ab s 8 A8

* = 2
Ga 2)\ sP

11,500 22,500 36,000
Unswollen
14.510.8 19.5+41.5 24.9+1.4
Swollen in m-xylene
1.51 1.57 1.67
7.4%0.7 8.3+0.5 9.5%0.5
16.8%1.4 20.5+1.2 26.4+1.,2
Swollen in silicone oil
1.19 1.24 1.30
10.5+1.3 12.7+0.9 14.710.8
14.7¢1.7 19.6+1.4 24.8%1.3
NN A A S A L T\ P AT AR
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N Table 3. Threshold work G, (J/m?) of detachment for
;' ——
A interlinked PDMS layers and threshold fracture
2535 energy G_ (J/m?), in parentheses, for the
RN layers themselves
AR =
e Molecular weight Mn of PDMS in upper layer
~ _. _n
oo

11,500 22,500 36,000

11,500 15.5%0.4 17.1+0.4 18.9+0.5
(35)

.,
o Ol

ol 22,500 17.540.7 20.140.4 22.7+0.5
G (44)

X lower

o layer 36,000 (cohesive 24.6+0.6 25.6+0.4
AR rupture) (48)
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Table 4. Volume of PDMS liquid taken up at equilibrium

——

by unit volume of PDMS gels (taken from

Dl

reference 8).

Molecular weight ﬁn of PDMS liquid

11,500 22,500 36,000

ST,

. M of 11,500 0.271 0.149 0.109

PDMS 22,500 0.375 0.220 0.162
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gel 36,000 0.572 0.283 0.211
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Figure 2. Method employed for measuring the work Ga
of detachment. G, = 2P, where P is —

4

the peel force per unit width.
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Figure 3. Relations between the work Ga of detachment of
“ a PDMS layer and the concentration c of PDMS

-

molecules absorbed by the lower layer before

t the upper layer was gelled. The horizontal

g broken lines denote the work G  of fracture

’ of the upper layer, after gelation. Molecular
b weight of PDMS used for the upper layer:

11,500, O; 22,500, 4; 36,000,[] .
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